Given the root of a binary tree and an integer targetSum, return true if the tree has a root-to-leaf path such that adding up all the values along the path equals targetSum.
A leaf is a node with no children.
Example 1:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
Output: true
Explanation: The root-to-leaf path with the target sum is shown.
Example 2:
Input: root = [1,2,3], targetSum = 5
Output: false
Explanation: There two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
Example 3:
Input: root = [], targetSum = 0
Output: false
Explanation: Since the tree is empty, there are no root-to-leaf paths.
Constraints:
The number of nodes in the tree is in the range [0, 5000].
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
Solution
Approach #0: DFS
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */funchasPathSum(root *TreeNode, targetSum int) bool {if root ==nil {returnfalse }if root.Left ==nil&& root.Right ==nil {return root.Val == targetSum }returnhasPathSum(root.Left, targetSum-root.Val) ||hasPathSum(root.Right, targetSum-root.Val)}
Approach #1: BFS
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */funchasPathSum(root *TreeNode, targetSum int) bool {if root ==nil {returnfalse } nodeQ := []*TreeNode{root} valQ := []int{0}forlen(nodeQ) >0 { node := nodeQ[0] nodeQ = nodeQ[1:] val := valQ[0] valQ = valQ[1:]if node.Left ==nil&& node.Right ==nil&& val+node.Val == targetSum {returntrue }if node.Left !=nil { nodeQ =append(nodeQ, node.Left) valQ =append(valQ, node.Val+val) }if node.Right !=nil { nodeQ =append(nodeQ, node.Right) valQ =append(valQ, node.Val+val) } }returnfalse}