2022-06-14
Description
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
Solution
Approach #0
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([][]int, m+1)
for i := 0; i < m+1; i++ {
dp[i] = make([]int, n+1)
dp[i][0] = i
}
for i := 0; i < n+1; i++ {
dp[0][i] = i
}
for i := 1; i < m+1; i++ {
for j := 1; j < n+1; j++ {
a, b, c := dp[i][j-1]+1, dp[i-1][j]+1, dp[i-1][j-1]
if word1[i-1] != word2[j-1] {
c += 1
}
dp[i][j] = min(a, min(b, c))
}
}
return dp[m][n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Approach #1
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([]int, n+1)
for i := 0; i < n+1; i++ {
dp[i] = i
}
var ld int
for i := 1; i < m+1; i++ {
ld = dp[0]
dp[0] = i
for j := 1; j < n+1; j++ {
a, b, c := dp[j-1]+1, dp[j]+1, ld
if word1[i-1] != word2[j-1] {
c += 1
}
ld = dp[j]
dp[j] = min(a, min(b, c))
}
}
return dp[n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Description
You are given an integer array coins
representing coins of different denominations and an integer amount
representing a total amount of money.
Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1
.
You may assume that you have an infinite number of each kind of coin.
Example 1:
Input: coins = [1,2,5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:
Input: coins = [2], amount = 3
Output: -1
Example 3:
Input: coins = [1], amount = 0
Output: 0
Constraints:
1 <= coins.length <= 12
1 <= coins[i] <= 2^31 - 1
0 <= amount <= 10^4
Solution
Approach #0
func coinChange(coins []int, amount int) int {
dp := make([]int, amount+1)
for i := 1; i < amount+1; i++ {
dp[i] = amount + 1
}
for i := 1; i <= amount; i++ {
for _, v := range coins {
if v <= i {
dp[i] = min(dp[i], dp[i-v]+1)
}
}
}
if dp[amount] > amount {
return -1
}
return dp[amount]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
Description
Given an integer n
, break it into the sum of k
positive integers, where k >= 2
, and maximize the product of those integers.
Return the maximum product you can get.
Example 1:
Input: n = 2
Output: 1
Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: n = 10
Output: 36
Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Constraints:
2 <= n <= 58
Solution
Approach #0
func integerBreak(n int) int {
dp := make([]int, n+1)
for i := 2; i <= n; i++ {
var cur int
for j := 1; j < i; j++ {
cur = max(cur, max(j*(i-j), j*dp[i-j]))
}
dp[i] = cur
}
return dp[n]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
Description
Given an m x n
matrix mat
, return an array of all the elements of the array in a diagonal order.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]]
Output: [1,2,4,7,5,3,6,8,9]
Example 2:
Input: mat = [[1,2],[3,4]]
Output: [1,2,3,4]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 10^4
1 <= m * n <= 10^4
-10^5 <= mat[i][j] <= 10^5
Solution
Approach #0
func findDiagonalOrder(mat [][]int) []int {
m, n := len(mat), len(mat[0])
ans := make([]int, 0, m*n)
for i := 0; i < m+n-1; i++ {
if i%2 == 1 {
x := max(i-n+1, 0)
y := min(i, n-1)
for x < m && y >= 0 {
ans = append(ans, mat[x][y])
x++
y--
}
} else {
x := min(i, m-1)
y := max(i-m+1, 0)
for x >= 0 && y < n {
ans = append(ans, mat[x][y])
x--
y++
}
}
}
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
Last updated