2022-06-04

Description

Given an n x n binary matrix grid, return the length of the shortest clear path in the matrix. If there is no clear path, return -1.

A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)) to the bottom-right cell (i.e., (n - 1, n - 1)) such that:

  • All the visited cells of the path are 0.

  • All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).

The length of a clear path is the number of visited cells of this path.

Example 1:

Input: grid = [[0,1],[1,0]]
Output: 2

Example 2:

Input: grid = [[0,0,0],[1,1,0],[1,1,0]]
Output: 4

Example 3:

Constraints:

  • n == grid.length

  • n == grid[i].length

  • 1 <= n <= 100

  • grid[i][j] is 0 or 1

Solution

Approach #0

Description

Given an m x n matrix board containing 'X' and 'O', capture all regions that are 4-directionally surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

Example 1:

Example 2:

Constraints:

  • m == board.length

  • n == board[i].length

  • 1 <= m, n <= 200

  • board[i][j] is 'X' or 'O'.

Solution

Approach #0: BFS

Approach #1: DFS

Description

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Example 2:

Constraints:

  • n == graph.length

  • 2 <= n <= 15

  • 0 <= graph[i][j] < n

  • graph[i][j] != i (i.e., there will be no self-loops).

  • All the elements of graph[i] are unique.

  • The input graph is guaranteed to be a DAG.

Solution

Approach #0: DFS

Approach #1: BFS

Last updated