2022-05-28

Description

Reverse bits of a given 32 bits unsigned integer.

Note:

  • Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They should not affect your implementation, as the integer's internal binary representation is the same, whether it is signed or unsigned.

  • In Java, the compiler represents the signed integers using 2's complement notation. Therefore, in Example 2 above, the input represents the signed integer -3 and the output represents the signed integer -1073741825.

Example 1:

Input: n = 00000010100101000001111010011100
Output:    964176192 (00111001011110000010100101000000)
Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000.

Example 2:

Input: n = 11111111111111111111111111111101
Output:   3221225471 (10111111111111111111111111111111)
Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10111111111111111111111111111111.

Constraints:

  • The input must be a binary string of length 32

Follow up: If this function is called many times, how would you optimize it?

Solution

Approach #0

func reverseBits(num uint32) uint32 {
    var res uint32
    for i := 0; i < 32 && num > 0; i++ {
        res |= num & 1 << (31 - i)
        num >>= 1
    }
    return res
}

Approach #1: Divide And Conquer

Without reading the official solution, this approach will never come into my mind...

const (
    m1 = 0x55555555 // 01010101010101010101010101010101
    m2 = 0x33333333 // 00110011001100110011001100110011
    m4 = 0x0f0f0f0f // 00001111000011110000111100001111
    m8 = 0x00ff00ff // 00000000111111110000000011111111
)

func reverseBits(n uint32) uint32 {
    n = n>>1&m1 | n&m1<<1
    n = n>>2&m2 | n&m2<<2
    n = n>>4&m4 | n&m4<<4
    n = n>>8&m8 | n&m8<<8
    return n>>16 | n<<16
}

Description

Given a non-empty array of integers nums, every element appears twice except for one. Find that single one.

You must implement a solution with a linear runtime complexity and use only constant extra space.

Example 1:

Input: nums = [2,2,1]
Output: 1

Example 2:

Input: nums = [4,1,2,1,2]
Output: 4

Example 3:

Input: nums = [1]
Output: 1

Constraints:

  • 1 <= nums.length <= 3 * 10^4

  • -3 * 10^4 <= nums[i] <= 3 * 10^4

  • Each element in the array appears twice except for one element which appears only once.

Solution

Approach #0

func singleNumber(nums []int) int {
    res := 0
    for _, num := range nums {
        res ^= num
    }
    return res
}

Description

A valid parentheses string is either empty "", "(" + A + ")", or A + B, where A and B are valid parentheses strings, and + represents string concatenation.

  • For example, "", "()", "(())()", and "(()(()))" are all valid parentheses strings.

A valid parentheses string s is primitive if it is nonempty, and there does not exist a way to split it into s = A + B, with A and B nonempty valid parentheses strings.

Given a valid parentheses string s, consider its primitive decomposition: s = P1 + P2 + ... + Pk, where Pi are primitive valid parentheses strings.

Return s after removing the outermost parentheses of every primitive string in the primitive decomposition of s.

Example 1:

Input: s = "(()())(())"
Output: "()()()"
Explanation: 
The input string is "(()())(())", with primitive decomposition "(()())" + "(())".
After removing outer parentheses of each part, this is "()()" + "()" = "()()()".

Example 2:

Input: s = "(()())(())(()(()))"
Output: "()()()()(())"
Explanation: 
The input string is "(()())(())(()(()))", with primitive decomposition "(()())" + "(())" + "(()(()))".
After removing outer parentheses of each part, this is "()()" + "()" + "()(())" = "()()()()(())".

Example 3:

Input: s = "()()"
Output: ""
Explanation: 
The input string is "()()", with primitive decomposition "()" + "()".
After removing outer parentheses of each part, this is "" + "" = "".

Constraints:

  • 1 <= s.length <= 105

  • s[i] is either '(' or ')'.

  • s is a valid parentheses string.

Solution

Approach #0

func removeOuterParentheses(s string) string {
    var res, stack []rune
    for _, ch := range s {
        if ch == ')' {
            stack = stack[:len(stack)-1]
        }
        if len(stack) > 0 {
            res = append(res, ch)
        }
        if ch == '(' {
            stack = append(stack, ch)
        }
    }
    return string(res)
}

Description

Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a given target value.

If target is not found in the array, return [-1, -1].

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]

Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]

Example 3:

Input: nums = [], target = 0
Output: [-1,-1]

Constraints:

  • 0 <= nums.length <= 10^5

  • -10^9 <= nums[i] <= 10^9

  • nums is a non-decreasing array.

  • -10^9 <= target <= 10^9

Solution

Approach #0

func binarySearch(nums []int, target int, lower bool) (res int) {
    res = len(nums)
    for i, j := 0, len(nums)-1; i <= j; {
        mid := (i + j) / 2
        if nums[mid] > target || (lower && nums[mid] >= target) {
            j = mid - 1
            res = mid
        } else {
            i = mid + 1
        }
    }
    return
}

func searchRange(nums []int, target int) []int {
    low := binarySearch(nums, target, true)
    high := binarySearch(nums, target, false) - 1
    if low <= high && high < len(nums) && nums[low] == nums[high] {
        return []int{low, high}
    }
    return []int{-1, -1}
}

Approach #1

func searchRange(nums []int, target int) []int {
    low := sort.SearchInts(nums, target)
    if low >= len(nums) || nums[low] != target {
        return []int{-1, -1}
    }
    high := sort.SearchInts(nums, target+1) - 1
    return []int{low, high}
}

Description

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4

Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

Example 3:

Input: nums = [1], target = 0
Output: -1

Constraints:

  • 1 <= nums.length <= 5000

  • -10^4 <= nums[i] <= 10^4

  • All values of nums are unique.

  • nums is an ascending array that is possibly rotated.

  • -10^4 <= target <= 10^4

Solution

Approach #0

func search(nums []int, target int) int {
    n := len(nums)
    if n == 0 {
        return -1
    }
    if n == 1 {
        if nums[0] == target {
            return 0
        }
        return -1
    }

    for i, j := 0, n-1; i <= j; {
        mid := (i + j) / 2
        if nums[mid] == target {
            return mid
        }
        if nums[0] <= nums[mid] {
            if nums[0] <= target && target < nums[mid] {
                j = mid - 1
            } else {
                i = mid + 1
            }
        } else {
            if nums[mid] < target && target <= nums[n-1] {
                i = mid + 1
            } else {
                j = mid - 1
            }
        }
    }
    return -1
}

Description

Write an efficient algorithm that searches for a value target in an m x n integer matrix matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.

  • The first integer of each row is greater than the last integer of the previous row.

Example 1:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: true

Example 2:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
Output: false

Constraints:

  • m == matrix.length

  • n == matrix[i].length

  • 1 <= m, n <= 100

  • -10^4 <= matrix[i][j], target <= 10^4

Solution

Approach #0

func searchMatrix(matrix [][]int, target int) bool {
    m, n := len(matrix), len(matrix[0])
    i, j := -1, m-1
    for i < j {
        mid := (j-i+1)/2 + i
        if matrix[mid][0] <= target {
            i = mid
        } else {
            j = mid - 1
        }
    }
    if i == -1 {
        return false
    }
    for p, q := 0, n-1; p <= q; {
        mid := (p-q)/2 + q
        if matrix[i][mid] == target {
            return true
        }
        if matrix[i][mid] > target {
            q = mid - 1
        } else {
            p = mid + 1
        }
    }
    return false
}

Approach #1

func searchMatrix(matrix [][]int, target int) bool {
    m, n := len(matrix), len(matrix[0])
    row := sort.Search(m, func(i int) bool { return matrix[i][0] > target }) - 1
    if row < 0 {
        return false
    }
    column := sort.SearchInts(matrix[row], target)
    return column < n && matrix[row][column] == target
}

Approach #2

func searchMatrix(matrix [][]int, target int) bool {
    m, n := len(matrix), len(matrix[0])
    i := sort.Search(m*n, func(i int) bool { return matrix[i/n][i%n] >= target })
    return i < m*n && matrix[i/n][i%n] == target
}

Last updated