Given an integer array nums sorted in non-decreasing order, return an array of the squares of each number sorted in non-decreasing order.
Example 1:
Input: nums = [-4,-1,0,3,10]
Output: [0,1,9,16,100]
Explanation: After squaring, the array becomes [16,1,0,9,100].
After sorting, it becomes [0,1,9,16,100].
Given an array, rotate the array to the right by k steps, where k is non-negative.
Example 1:
Input: nums = [1,2,3,4,5,6,7], k = 3
Output: [5,6,7,1,2,3,4]
Explanation:
rotate 1 steps to the right: [7,1,2,3,4,5,6]
rotate 2 steps to the right: [6,7,1,2,3,4,5]
rotate 3 steps to the right: [5,6,7,1,2,3,4]
Example 2:
Input: nums = [-1,-100,3,99], k = 2
Output: [3,99,-1,-100]
Explanation:
rotate 1 steps to the right: [99,-1,-100,3]
rotate 2 steps to the right: [3,99,-1,-100]
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
Follow up:
Try to come up with as many solutions as you can. There are at least three different ways to solve this problem.
Could you do it in-place with O(1) extra space?
Solution
funcrev(nums []int) { length :=len(nums)for i, j :=0, length-1; i < length/2; i++ { nums[i], nums[j-i] = nums[j-i], nums[i] }}funcrotate(nums []int, k int) { k %=len(nums) rev(nums) rev(nums[k:]) rev(nums[:k])}