2022-06-05
Description
Given an integer array nums
of unique elements, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,3]
Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
Example 2:
Input: nums = [0]
Output: [[],[0]]
Constraints:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
All the numbers of
nums
are unique.
Solution
Approach #0
func subsets(nums []int) (ans [][]int) {
n := len(nums)
for p := 0; p < 1<<n; p++ {
var a []int
for i, num := range nums {
if p>>i&1 > 0 {
a = append(a, num)
}
}
ans = append(ans, a)
}
return
}
Approach #1
func subsets(nums []int) (ans [][]int) {
n := len(nums)
var tmp []int
var dfs func(int)
dfs = func(cur int) {
if cur == n {
ans = append(ans, append([]int(nil), tmp...))
return
}
tmp = append(tmp, nums[cur])
dfs(cur + 1)
tmp = tmp[:len(tmp)-1]
dfs(cur + 1)
}
dfs(0)
return
}
Description
Given an integer array nums
that may contain duplicates, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,2]
Output: [[],[1],[1,2],[1,2,2],[2],[2,2]]
Example 2:
Input: nums = [0]
Output: [[],[0]]
Constraints:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
Solution
Approach #0
func subsetsWithDup(nums []int) (ans [][]int) {
sort.Ints(nums)
n := len(nums)
outer:
for p := 0; p < 1<<n; p++ {
var a []int
for i, num := range nums {
if p>>i&1 > 0 {
if i > 0 && p>>(i-1)&1 == 0 && nums[i-1] == num {
continue outer
}
a = append(a, num)
}
}
ans = append(ans, append([]int(nil), a...))
}
return
}
Approach #1
func subsetsWithDup(nums []int) (ans [][]int) {
sort.Ints(nums)
n := len(nums)
var tmp []int
var dfs func(bool, int)
dfs = func(choosePre bool, cur int) {
if cur == n {
ans = append(ans, append([]int(nil), tmp...))
return
}
dfs(false, cur+1)
if !choosePre && cur > 0 && nums[cur-1] == nums[cur] {
return
}
tmp = append(tmp, nums[cur])
dfs(true, cur+1)
tmp = tmp[:len(tmp)-1]
}
dfs(false, 0)
return
}
Last updated