func subsets(nums []int) (ans [][]int) {
n := len(nums)
for p := 0; p < 1<<n; p++ {
var a []int
for i, num := range nums {
if p>>i&1 > 0 {
a = append(a, num)
}
}
ans = append(ans, a)
}
return
}
Approach #1
func subsets(nums []int) (ans [][]int) {
n := len(nums)
var tmp []int
var dfs func(int)
dfs = func(cur int) {
if cur == n {
ans = append(ans, append([]int(nil), tmp...))
return
}
tmp = append(tmp, nums[cur])
dfs(cur + 1)
tmp = tmp[:len(tmp)-1]
dfs(cur + 1)
}
dfs(0)
return
}
Description
Given an integer array nums that may contain duplicates, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
func subsetsWithDup(nums []int) (ans [][]int) {
sort.Ints(nums)
n := len(nums)
outer:
for p := 0; p < 1<<n; p++ {
var a []int
for i, num := range nums {
if p>>i&1 > 0 {
if i > 0 && p>>(i-1)&1 == 0 && nums[i-1] == num {
continue outer
}
a = append(a, num)
}
}
ans = append(ans, append([]int(nil), a...))
}
return
}
Approach #1
func subsetsWithDup(nums []int) (ans [][]int) {
sort.Ints(nums)
n := len(nums)
var tmp []int
var dfs func(bool, int)
dfs = func(choosePre bool, cur int) {
if cur == n {
ans = append(ans, append([]int(nil), tmp...))
return
}
dfs(false, cur+1)
if !choosePre && cur > 0 && nums[cur-1] == nums[cur] {
return
}
tmp = append(tmp, nums[cur])
dfs(true, cur+1)
tmp = tmp[:len(tmp)-1]
}
dfs(false, 0)
return
}