2022-06-07
Description
Given a string containing digits from 2-9
inclusive, return all possible letter combinations that the number could represent. Return the answer in any order.
A mapping of digit to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
Example 1:
Input: digits = "23"
Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"]
Example 2:
Input: digits = ""
Output: []
Example 3:
Input: digits = "2"
Output: ["a","b","c"]
Constraints:
0 <= digits.length <= 4
digits[i]
is a digit in the range['2', '9']
.
Solution
Approach #0
var keyboard = map[byte]string {
'2':"abc",
'3':"def",
'4':"ghi",
'5':"jkl",
'6':"mno",
'7':"pqrs",
'8':"tuv",
'9':"wxyz",
}
func letterCombinations(digits string) (ans []string) {
n:=len(digits)
if n==0 {
return
}
var b func(cur int, str string)
b=func(cur int, str string) {
if cur==n {
ans = append(ans, str)
return
}
for _, ch := range keyboard[digits[cur]] {
b(cur+1, str+string(ch))
}
}
b(0,"")
return
}
Description
Given n
pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
Example 1:
Input: n = 3
Output: ["((()))","(()())","(())()","()(())","()()()"]
Example 2:
Input: n = 1
Output: ["()"]
Constraints:
1 <= n <= 8
Solution
Approach #0
func generateParenthesis(n int) (ans []string) {
var tmp []byte
var b func(left, right int)
b = func(left, right int) {
if len(tmp) == n*2 {
ans = append(ans, string(tmp))
return
}
if left < n {
tmp = append(tmp, '(')
b(left+1, right)
tmp = tmp[:len(tmp)-1]
}
if right < left {
tmp = append(tmp, ')')
b(left, right+1)
tmp = tmp[:len(tmp)-1]
}
}
b(0, 0)
return
}
Description
Given an m x n
grid of characters board
and a string word
, return true
if word
exists in the grid.
The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Example 1:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true
Example 2:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true
Example 3:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false
Constraints:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board
andword
consists of only lowercase and uppercase English letters.
Follow up: Could you use search pruning to make your solution faster with a larger board
?
Solution
Approach #0
var (
dx = []int{0, 1, 0, -1}
dy = []int{1, 0, -1, 0}
)
func exist(board [][]byte, word string) bool {
m, n := len(board), len(board[0])
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
var b func(x, y, index int) bool
b = func(x, y, index int) bool {
if board[x][y] != word[index] {
return false
}
if index == len(word)-1 {
return true
}
vis[x][y] = true
defer func() { vis[x][y] = false }()
for i := 0; i < 4; i++ {
xx, yy := x+dx[i], y+dy[i]
if xx >= 0 && xx < m && yy >= 0 && yy < n && !vis[xx][yy] {
if b(xx, yy, index+1) {
return true
}
}
}
return false
}
for i, row := range board {
for j := range row {
if b(i, j, 0) {
return true
}
}
}
return false
}
Last updated