Given an integer array nums, design an algorithm to randomly shuffle the array. All permutations of the array should be equally likely as a result of the shuffling.
Implement the Solution class:
Solution(int[] nums) Initializes the object with the integer array nums.
int[] reset() Resets the array to its original configuration and returns it.
int[] shuffle() Returns a random shuffling of the array.
Example 1:
Input
["Solution", "shuffle", "reset", "shuffle"]
[[[1, 2, 3]], [], [], []]
Output
[null, [3, 1, 2], [1, 2, 3], [1, 3, 2]]
Explanation
Solution solution = new Solution([1, 2, 3]);
solution.shuffle(); // Shuffle the array [1,2,3] and return its result.
// Any permutation of [1,2,3] must be equally likely to be returned.
// Example: return [3, 1, 2]
solution.reset(); // Resets the array back to its original configuration [1,2,3]. Return [1, 2, 3]
solution.shuffle(); // Returns the random shuffling of array [1,2,3]. Example: return [1, 3, 2]
Constraints:
1 <= nums.length <= 50
-10^6 <= nums[i] <= 10^6
All the elements of nums are unique.
At most 10^4 calls in total will be made to reset and shuffle.
Solution
Approach #0
typeSolutionstruct { nums, original []int}funcConstructor(nums []int) Solution {returnSolution{nums, append([]int(nil), nums...)}}func (this *Solution) Reset() []int {copy(this.nums, this.original)return this.nums}func (this *Solution) Shuffle() []int { shuffle :=make([]int, len(this.nums))for i :=range shuffle { j := rand.Intn(len(this.nums)) shuffle[i] = this.nums[j] this.nums =append(this.nums[:j], this.nums[j+1:]...) } this.nums = shufflereturn this.nums}/** * Your Solution object will be instantiated and called as such: * obj := Constructor(nums); * param_1 := obj.Reset(); * param_2 := obj.Shuffle(); */
Approach #1
typeSolutionstruct { nums, original []int}funcConstructor(nums []int) Solution {returnSolution{nums, append([]int(nil), nums...)}}func (this *Solution) Reset() []int {copy(this.nums, this.original)return this.nums}func (this *Solution) Shuffle() []int { n :=len(this.nums)for i :=range this.nums { j := i + rand.Intn(n-i) this.nums[i], this.nums[j] = this.nums[j], this.nums[i] }return this.nums}/** * Your Solution object will be instantiated and called as such: * obj := Constructor(nums); * param_1 := obj.Reset(); * param_2 := obj.Shuffle(); */
funcisHappy(n int) bool { slow, fast := n, step(n)for fast !=1&& fast != slow { slow = step(slow) fast = step(step(fast)) }return fast ==1}funcstep(n int) int {var sum intfor n >0 { sum += (n %10) * (n %10) n /=10 }return sum}
Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane, return the maximum number of points that lie on the same straight line.
funcmaxPoints(points [][]int) (ans int) { n :=len(points)if n <=2 {return n }for i, p :=range points {if ans >= n-i || ans > n/2 {break } cnt :=make(map[int]int)for _, q :=range points[i+1:] { x, y := p[0]-q[0], p[1]-q[1]if x ==0 { y =1 }if y ==0 { x =1 }if y <0 { x, y =-x, -y } g := gcd(abs(x), abs(y)) x /= g y /= g cnt[y+20001*x]++ }for _, c :=range cnt { ans =max(ans, c+1) } }return}funcgcd(a, b int) int {for a >0 { a, b = b%a, a }return b}funcabs(a int) int {if a <0 {return-a }return a}funcmax(a, b int) int {if a > b {return a }return b}
Given an array of integers nums and an integer k, return the number of unique k-diff pairs in the array.
A k-diff pair is an integer pair (nums[i], nums[j]), where the following are true:
0 <= i, j < nums.length
i != j
nums[i] - nums[j] == k
Notice that |val| denotes the absolute value of val.
Example 1:
Input: nums = [3,1,4,1,5], k = 2
Output: 2
Explanation: There are two 2-diff pairs in the array, (1, 3) and (3, 5).
Although we have two 1s in the input, we should only return the number of unique pairs.
Example 2:
Input: nums = [1,2,3,4,5], k = 1
Output: 4
Explanation: There are four 1-diff pairs in the array, (1, 2), (2, 3), (3, 4) and (4, 5).
Example 3:
Input: nums = [1,3,1,5,4], k = 0
Output: 1
Explanation: There is one 0-diff pair in the array, (1, 1).
Constraints:
1 <= nums.length <= 10^4
-10^7 <= nums[i] <= 10^7
0 <= k <= 10^7
Solution
Approach #0
funcfindPairs(nums []int, k int) (ans int) { sort.Ints(nums) j, n :=0, len(nums)for i, num :=range nums {if i ==0|| nums[i-1] != num {for j < n && (nums[j] < k+num || j <= i) { j++ }if j < n && nums[j] == k+num { ans++ } } }return}